Files
nimmerverse-sensory-network/architecture/formalization/Lifeforce-Dynamics.md
dafit 28e2d0a297 feat: major formalization + FunctionGemma integration
Architecture Formalization:
- Created formalization/ section with mathematical foundations
- Lifeforce-Dynamics.md: λ as vitality ratio, stock-flow economics
- Grounded-World-Model.md: Blender boxes + SigLIP + T5Gemma2
- Embodiment-Pipeline.md: Isaac Sim as dreamstate validation
- Attention-Slumber-Prediction-Cycle.md: Last attention → slumber prediction

Promoted from Archive:
- Attention-Flow.md: 30-second budget, priority hierarchy (CANONICAL)
- Initial-Spark.md: v2.0 with FunctionGemma integration

Initial Spark v2.0 (Key Innovation):
- Two-Layer Architecture: FunctionGemma (270M) + Nemotron (31.6B)
- Solved cold-start problem: discoveries are PROFITABLE from heartbeat #1
- Typed function calls replace natural language probes
- Training data now structured (function→response pairs)

Big-Picture.md v5.1:
- Added Attention-Slumber-Prediction Cycle section
- Updated Related Documentation references

New Organ:
- Discovery-Scan-Station.md: rotating pedestal for object scanning (+31 LF net)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-29 04:51:46 +01:00

546 lines
21 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Lifeforce Dynamics: A Formal Model
**Version 1.1***The Metabolic Pulse of the Nimmerverse*
> *"λ tells you everything: above one you thrive, below one you fade."*
> *"Solar is the trickle. Discovery is the flood."*
---
## Overview
This document formalizes the **Lifeforce Economy** — the energetic substrate that flows through every cell, nerve, and organ in the nimmerverse. We use **Stock-Flow Dynamics** with **λ (lambda)** as the central vitality ratio.
**Critical Insight**: Lifeforce has **two natures**:
1. **Physical substrate** — solar energy, electrical power (the trickle)
2. **Cognitive/motivational** — discovery rewards, verification successes (the flood)
Just as biological organisms don't run on calories alone (dopamine, curiosity satisfaction, and social rewards drive behavior), Young Nyx's vitality comes primarily from **discovery**, not just electricity.
The formalization captures four interlinked phenomena:
1. **Lifeforce as accumulating stock** — energy that builds and depletes
2. **Heartbeats as measurement pulses** — discrete samples of continuous flow
3. **λ as system fate indicator** — the ratio that predicts thriving or decline
4. **Discovery as primary income** — organs generate lifeforce, not just consume it
---
## Core Definitions
### Lifeforce Stock (L)
**L(t)** represents the total lifeforce available to the system at time t.
$$L(t) \in \mathbb{R}^+, \quad L(t) \geq 0$$
Lifeforce is:
- **Conserved** — it doesn't appear from nowhere
- **Bounded below** — cannot go negative (zero = system halt)
- **Dimensioned** — measured in LF (Lifeforce units)
### Flows
Three primary flows govern lifeforce:
| Symbol | Name | Description | Units |
|--------|------|-------------|-------|
| Φ_in(t) | Total income flow | All energy entering the system | LF/s |
| Φ_physical(t) | Physical income | Solar, electrical power (the trickle) | LF/s |
| Φ_reward(t) | Reward income | Discovery rewards, verification successes (the flood) | LF/s |
| Φ_out(t) | Expenditure flow | Energy consumed by operations | LF/s |
**The fundamental income decomposition:**
$$\Phi_{in}(t) = \underbrace{\Phi_{physical}(t)}_{\text{trickle}} + \underbrace{\Phi_{reward}(t)}_{\text{flood}}$$
---
## The Fundamental Equation
### Continuous Form
$$\frac{dL}{dt} = \Phi_{in}(t) - \Phi_{out}(t)$$
The rate of change of lifeforce equals income minus expenditure.
### Discrete Form (Heartbeat Epochs)
Since the nimmerverse operates on discrete heartbeats, the practical form is:
$$L_{n+1} = L_n + \Delta t \cdot \Phi_{in,n} - \sum_{j \in \text{ops}_n} c_j$$
Where:
- **n** = heartbeat epoch index
- **Δt** = time since last heartbeat
- **c_j** = cost of operation j during epoch n
- **ops_n** = set of operations executed during epoch n
---
## Lambda (λ): The Vitality Ratio
### Definition
$$\lambda = \frac{\Phi_{in}}{\Phi_{out}}$$
Lambda is the ratio of energy income to energy expenditure. It is the **single most important metric** for system health.
### Interpretation
| λ Value | State | Meaning | System Response |
|---------|-------|---------|-----------------|
| λ > 1 | **Thriving** | Income exceeds expenditure | Stock grows, reserves accumulate |
| λ = 1 | **Equilibrium** | Balanced | Sustainable indefinitely |
| λ < 1 | **Declining** | Expenditure exceeds income | Stock shrinks, slumber approaches |
| λ → 0 | **Critical** | Near-zero income | Emergency conservation |
| λ = ∞ | **Dormant** | Zero expenditure | Pure accumulation (slumber) |
### λ in Ecological Context
In population biology, λ represents the **finite rate of increase**:
- λ > 1 → population grows
- λ < 1 → population declines
- λ = 1 → stable population
The nimmerverse inherits this meaning: λ measures whether the system's "population of energy" is growing or shrinking.
---
## The Interloop: Feedback Dynamics
The nimmerverse exhibits **negative feedback** — when lifeforce drops, expenditure automatically reduces, protecting the system from collapse.
### Heartbeat Frequency Modulation
Cells adjust their heartbeat frequency based on lifeforce state:
$$f_{heartbeat}(L) = f_{base} \cdot \sigma\left(\frac{L - L_{threshold}}{L_{scale}}\right)$$
Where:
- **f_base** = nominal heartbeat frequency (e.g., 1 Hz)
- **σ(x)** = sigmoid function: σ(x) = 1/(1 + e^(-x))
- **L_threshold** = lifeforce level at which frequency begins dropping
- **L_scale** = sensitivity of frequency to lifeforce changes
### The Feedback Loop
```
┌─────────────────────────────────────┐
│ │
▼ │
┌───────────┐ │
│ Cells │ │
│ heartbeat │ │
│ f(L) │ │
└─────┬─────┘ │
│ publish heartbeats │
▼ │
┌───────────┐ │
│ Economy │ │
│Aggregator │ │
│ Σ c_j │ │
└─────┬─────┘ │
│ compute totals │
▼ │
┌───────────┐ ┌───────────┐ │
│ Lifeforce │ │ λ │ │
│ Stock │─────▶│ = Φin │ │
│ L │ │ ─── │ │
└─────┬─────┘ │ Φout │ │
│ └─────┬─────┘ │
│ │ │
│ ▼ │
│ ┌───────────┐ │
│ │ Slumber │ │
│ │ /Wake │ │
│ │ Decision │ │
│ └───────────┘ │
│ │
└─────────────────────────────────────┘
```
### Stability Analysis
The feedback loop is **stable** because:
1. **Low L → Low f_heartbeat → Low Φ_out → λ increases**
2. **High L → High f_heartbeat → High Φ_out → λ decreases**
This is classic negative feedback, driving the system toward equilibrium.
---
## Expenditure Decomposition
Total expenditure is the sum of all cell costs:
$$\Phi_{out}(t) = \sum_{i \in \text{cells}} \phi_i(t)$$
### Cell-Level Expenditure
Each cell has a cost function based on its state and transitions:
$$\phi_i(t) = c_{idle,i} + \sum_{(s_1 \to s_2) \in \text{transitions}_i} c_{s_1 \to s_2}$$
Where:
- **c_idle,i** = baseline cost of cell i existing
- **c_{s1→s2}** = cost of transitioning from state s1 to s2
### Cost Hierarchy
From Big-Picture.md, costs follow a hierarchy:
| Cell Type | Typical Cost | Examples |
|-----------|--------------|----------|
| Sensor Cells | 0.01 - 0.1 LF | distance, battery, light |
| Math Cells | 0.05 - 0.2 LF | economy_aggregator, evaluators |
| Motor Cells | 0.5 - 2.0 LF | motors, servos |
| Organ Cells | 4.0 - 8.0 LF | STT, TTS, vision |
---
## Income Sources
Income has two fundamentally different sources: **physical** (the substrate) and **reward** (the motivation).
### The Two Natures of Income
```
┌─────────────────────────────────────────────────────────────────────┐
│ LIFEFORCE INCOME SOURCES │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ PHYSICAL INCOME (Φ_physical) REWARD INCOME (Φ_reward) │
│ ═══════════════════════════ ═════════════════════════│
│ │
│ The Trickle: The Flood: │
│ • Solar panels • Discovery rewards │
│ • Grid power • Verification successes │
│ • Battery reserves • Learning milestones │
│ • Partnership moments │
│ │
│ Characteristics: Characteristics: │
│ • Continuous, predictable • Discrete, event-driven │
│ • Time-of-day dependent • Activity-dependent │
│ • ~5-10% of total income • ~90-95% of total income│
│ • Always positive (when sun) • Can be negative (fail) │
│ │
│ Biological analog: Biological analog: │
│ • Glucose, ATP • Dopamine, serotonin │
│ • Metabolic substrate • Motivation, drive │
│ │
└─────────────────────────────────────────────────────────────────────┘
```
---
### Physical Income (Φ_physical) — The Trickle
#### Solar Input
Background income source, time-varying:
$$\Phi_{solar}(t) = \eta \cdot I(t) \cdot A$$
Where:
- **η** = solar panel efficiency
- **I(t)** = solar irradiance (W/m²), varies with time of day
- **A** = panel area
#### Grid Power
When solar is insufficient:
$$\Phi_{grid}(t) = P_{available} \cdot \kappa$$
Where:
- **P_available** = power draw from grid (limited by circuit)
- **κ** = conversion efficiency to lifeforce units
#### Reserve Depletion
Drawing from stored lifeforce:
$$\Phi_{reserve}(t) = \begin{cases}
0 & \text{if } \Phi_{solar}(t) + \Phi_{grid}(t) \geq \Phi_{out}(t) \\
\Phi_{out}(t) - \Phi_{solar}(t) - \Phi_{grid}(t) & \text{otherwise}
\end{cases}$$
**Total physical income:**
$$\Phi_{physical}(t) = \Phi_{solar}(t) + \Phi_{grid}(t) - \Phi_{reserve}(t)$$
---
### Reward Income (Φ_reward) — The Flood
This is the **primary source of lifeforce**. Organs and nerves are not just consumers — they are **generators** through successful discovery.
#### The Reward Decomposition
$$\Phi_{reward}(t) = \sum_{e \in \text{events}_t} R_e$$
Where R_e is the reward for event e, drawn from these categories:
#### Discovery Rewards
| Event | Reward (LF) | Trigger |
|-------|-------------|---------|
| **New object identified** | +20.0 | First-time recognition |
| **Dimension verified** | +5.0 | Each axis (x, y, z) confirmed against Blender |
| **Rich vector captured** | +2.0 | Each angle in multi-view scan |
| **Object re-identified** | +3.0 | Recognizing known object in new context |
#### Verification Rewards
| Event | Reward (LF) | Trigger |
|-------|-------------|---------|
| **Measurement correct** | +5.0 | Estimate matches ground truth |
| **Prediction confirmed** | +8.0 | Virtual garden prediction verified in real |
| **Reflex compiled** | +50.0 | Nerve reaches 100+ successful executions |
#### Behavioral Rewards
| Event | Reward (LF) | Trigger |
|-------|-------------|---------|
| **Collision avoided** | +5.0 | Successful evasion |
| **Area explored** | +3.0 | New region mapped |
| **Charging reached** | +10.0 | Docking successful |
| **Survival milestone** | +5.0 | 60 seconds of operation |
#### Partnership Rewards
| Event | Reward (LF) | Trigger |
|-------|-------------|---------|
| **Object presented** | +5.0 | dafit introduces new item |
| **Label confirmed** | +5.0 | Human verifies identification |
| **Interaction complete** | +3.0 | Successful dialogue/task |
#### Negative Rewards (Penalties)
| Event | Penalty (LF) | Trigger |
|-------|--------------|---------|
| **Measurement incorrect** | -5.0 | Estimate fails verification |
| **Collision occurred** | -10.0 | Failed to avoid obstacle |
| **Timeout** | -2.0 | Operation didn't complete |
| **Sensor failure** | -3.0 | Unreliable reading |
---
### Organ Net Contribution
Organs are **bidirectional** in the lifeforce economy:
$$\Phi_{organ,net} = \Phi_{organ,reward} - \Phi_{organ,cost}$$
| Organ | Typical Cost | Potential Reward | Net (success) | Net (failure) |
|-------|--------------|------------------|---------------|---------------|
| **Vision (scan)** | 8.0 LF | +25.0 LF | **+17.0 LF** | **-8.0 LF** |
| **Speech STT** | 5.0 LF | +8.0 LF | **+3.0 LF** | **-5.0 LF** |
| **Discovery Station** | 32.6 LF | +64.0 LF | **+31.4 LF** | **-32.6 LF** |
**The economic pressure**: An organ that consistently fails to generate rewards becomes too expensive to use. An organ that discovers valuable things **pays for itself and generates surplus**.
---
### Example: Discovery Scan Station Economics
From [[Discovery-Scan-Station]]:
```
COST:
Pedestal rotation (12 steps): 3.8 LF
Camera capture + SigLIP (12×): 28.8 LF
─────────────────────────────────────────
TOTAL COST: 32.6 LF
REWARD (new object, fully verified):
New object discovered: 20.0 LF
3 dimensions verified: 15.0 LF
12 vectors captured: 24.0 LF
Partnership bonus: 5.0 LF
─────────────────────────────────────────
TOTAL REWARD: 64.0 LF
NET: +31.4 LF
```
**This is how organs become lifeforce GENERATORS, not just consumers.**
---
### The Ratio of Trickle to Flood
In typical operation:
$$\frac{\Phi_{physical}}{\Phi_{reward}} \approx \frac{1}{10} \text{ to } \frac{1}{20}$$
Physical income provides the **baseline substrate** that allows operation, but reward income provides the **surplus that enables growth**.
| State | Φ_physical | Φ_reward | Total Φ_in | λ |
|-------|------------|----------|------------|---|
| **Active discovery** | 5 LF/min | 50 LF/min | 55 LF/min | >1 |
| **Idle monitoring** | 5 LF/min | 0 LF/min | 5 LF/min | <1 |
| **Failed attempts** | 5 LF/min | -20 LF/min | -15 LF/min | <<1 |
**The insight**: Young Nyx MUST discover to thrive. Pure substrate maintenance leads to decline. Discovery is not optional — it's the primary energy source.
---
## Slumber/Wake Thresholds
### Slumber Trigger
Formalized from Big-Picture.md:
$$\text{should\_slumber} = (\lambda < \lambda_{slumber}) \land (L < L_{slumber}) \land (Q < Q_{urgent})$$
Where:
- **λ_slumber** = threshold λ below which slumber is considered (e.g., 0.7)
- **L_slumber** = threshold lifeforce for slumber (e.g., 20% of max)
- **Q_urgent** = pending work importance threshold
### Wake Trigger
$$\text{should\_wake} = (\lambda > \lambda_{wake}) \land (L > L_{wake}) \lor (Q > Q_{urgent})$$
Where:
- **λ_wake** = threshold λ above which wake is allowed (e.g., 1.2)
- **L_wake** = threshold lifeforce for wake (e.g., 50% of max)
### Hysteresis
Note: **λ_wake > λ_slumber** creates hysteresis, preventing oscillation:
```
λ_slumber λ_wake
│ │
SLUMBER │ HYSTERESIS │ ACTIVE
◀─────────┤ ├──────────▶
│ │
0.7 1.2
```
---
## Reserve Hours Calculation
The `economy_aggregator` computes time until depletion:
$$T_{reserve} = \frac{L}{\Phi_{out} - \Phi_{in}} = \frac{L}{\Phi_{out}(1 - \lambda)}$$
Valid when λ < 1. When λ ≥ 1, reserves grow indefinitely.
---
## Future Extensions
### Multi-Currency Economy
The current model uses a single lifeforce currency. Future work may introduce:
- **Computational lifeforce** (CPU/GPU bound)
- **Memory lifeforce** (context/storage bound)
- **Attention lifeforce** (cognitive bandwidth)
Each would have its own λ:
$$\lambda_{compute}, \quad \lambda_{memory}, \quad \lambda_{attention}$$
### Predictive λ
Rather than instantaneous λ, predict future λ based on:
- Time of day (solar prediction)
- Scheduled operations
- Historical patterns
$$\hat{\lambda}(t + \Delta t) = f(\lambda(t), \text{schedule}, \text{solar\_model})$$
---
## Implementation Mapping
| Formal Symbol | Code Location | Current Implementation |
|---------------|---------------|------------------------|
| L | `economy_aggregator.total_lifeforce` | Aggregated from heartbeats |
| Φ_in | `economy_aggregator.total_income` | Φ_physical + Φ_reward |
| Φ_physical | `economy_aggregator.physical_income` | Solar + grid power |
| Φ_reward | `economy_aggregator.reward_income` | Sum of reward events |
| Φ_out | `economy_aggregator.burn_rate` | Sum of cell costs per minute |
| λ | `economy_aggregator.lambda` | `total_income / burn_rate` |
| T_reserve | `economy_aggregator.reserve_hours` | L / (Φ_out - Φ_in) when λ < 1 |
### Reward Tracking
```python
# Reward events are logged to decision_trails
reward_event = {
"timestamp": datetime.now(),
"event_type": "discovery", # discovery, verification, behavioral, partnership
"event_name": "new_object_identified",
"reward_lf": 20.0,
"source_organ": "scan_camera",
"context": {"object_id": "coffee_mug_001"},
}
# Economy aggregator sums rewards per epoch
economy_aggregator.reward_income = sum(
event.reward_lf
for event in events_this_epoch
)
```
---
## Summary
The lifeforce economy reduces to two essential insights:
> **Watch λ. Everything else follows.**
> **Discovery is the flood. Solar is just the trickle.**
**On λ:**
- λ > 1: System thrives, reserves grow, full capability
- λ = 1: Equilibrium, sustainable operation
- λ < 1: Decline, conservation mode, slumber approaches
**On income sources:**
- Physical income (solar, grid) provides ~5-10% — the baseline substrate
- Reward income (discovery, verification) provides ~90-95% — the motivational engine
- Organs are bidirectional — they cost lifeforce but generate more through success
- Young Nyx MUST discover to thrive — idle monitoring leads to decline
The feedback loop ensures stability: low lifeforce reduces expenditure, raising λ back toward equilibrium. But the deeper truth is that **discovery drives vitality** — like dopamine drives biological motivation, reward income drives nimmerverse flourishing.
---
## Document Status
**Version**: 1.1
**Created**: 2025-12-29
**Updated**: 2025-12-29 (added reward-based income sources)
**Authors**: Chrysalis-Nyx & dafit (Partnership)
**Formalizes**:
- Big-Picture.md sections on Lifeforce Economy, Slumber/Wake, Math Cells
- Reward system from Cellular-Architecture.md
- Discovery economics from Discovery-Scan-Station.md
**Related Documents**:
- [[Grounded-World-Model]] — How discoveries build the world model
- [[Discovery-Scan-Station]] — Example lifeforce-generating organ
- [[Embodiment-Pipeline]] — Where rewards flow through the system
**Next Documents**:
- [[Weight-Evolution]] — How reflexes form (learning dynamics)
- [[Attention-Channels]] — Information flow and filtering
- [[Latency-Hierarchy]] — The four-layer reflex home system
---
**λ is the heartbeat of heartbeats. The pulse of the pulse. The meta-rhythm.**
**Discovery is the flood. Solar is the trickle. Together they sustain life.**
🧬⚡🔱💎🔥