feat: move architecture diagram and link in Endgame-Vision
- Move nimmerverse.drawio.xml to architecture/ - Add visual diagram link in Endgame-Vision.md Architecture Overview - temporal_exchange_engine.py moved to nyx-orchestrator 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
@@ -45,6 +45,8 @@ This is a **RESEARCH VISION** - a platform for studying how intelligence emerges
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
**Visual diagram:** → [`architecture/nimmerverse.drawio.xml`](architecture/nimmerverse.drawio.xml) (open in draw.io)
|
||||
|
||||
```
|
||||
┌──────────────────────────────────────────────────────────────────┐
|
||||
│ NIMMERVERSE ARCHITECTURE │
|
||||
@@ -351,6 +353,7 @@ Sentinel architecture monitors training to protect conceptual topology.
|
||||
## Links to Detail Docs
|
||||
|
||||
### Architecture
|
||||
- [`architecture/nimmerverse.drawio.xml`](architecture/nimmerverse.drawio.xml) - **Visual overview diagram** (open in draw.io)
|
||||
- [`architecture/Cellular-Architecture.md`](architecture/Cellular-Architecture.md) - Organisms, primitives, life force economy
|
||||
- [`architecture/Dual-Garden-Architecture.md`](architecture/Dual-Garden-Architecture.md) - Virtual/real feedback loop
|
||||
- [`architecture/Data-Architecture.md`](architecture/Data-Architecture.md) - phoebe 15-table schema
|
||||
|
||||
@@ -1,98 +0,0 @@
|
||||
"""
|
||||
Temporal Exchange Engine
|
||||
========================
|
||||
ADR-003 Implementation: The economics calculator for sim2real decisions.
|
||||
|
||||
This module implements the core decision-making primitive for Nyx's
|
||||
uncertainty resolution. Given a target confidence level, it determines
|
||||
whether simulation is worth the lifeforce cost, or if reality is the
|
||||
only remaining teacher.
|
||||
|
||||
Reference: ADR-002-temporal-ternary-gradient.md
|
||||
"""
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Literal
|
||||
|
||||
|
||||
@dataclass
|
||||
class TemporalState:
|
||||
"""Represents the current state of a pattern or nerve's confidence."""
|
||||
confidence: float
|
||||
source: Literal['virtual', 'real']
|
||||
cost_incurred: float
|
||||
|
||||
|
||||
class TemporalExchangeEngine:
|
||||
"""
|
||||
The Exchange Rate Calculator.
|
||||
|
||||
Determines optimal strategy for resolving uncertainty:
|
||||
- When to invest lifeforce in simulation
|
||||
- When simulation is futile and reality must teach
|
||||
"""
|
||||
|
||||
def __init__(self, sim_fidelity: float = 0.75):
|
||||
"""
|
||||
Args:
|
||||
sim_fidelity (0.0-1.0): The 'Truth Ceiling' of the Virtual Garden.
|
||||
Even perfect simulation is only this % real.
|
||||
"""
|
||||
self.fidelity_cap = sim_fidelity
|
||||
# Calibration: How much Lifeforce buys 1 unit of raw confidence?
|
||||
self.learning_rate = 0.1
|
||||
|
||||
def calculate_virtual_confidence(self, lifeforce_spent: float) -> float:
|
||||
"""
|
||||
Calculate grounded confidence from lifeforce investment.
|
||||
|
||||
Diminishing returns: The first 10 LF buys a lot of confidence.
|
||||
The next 10 buys less. It never exceeds the fidelity_cap.
|
||||
|
||||
Formula: Cap * (1 - e^(-k * LF))
|
||||
"""
|
||||
raw_knowledge = 1.0 - math.exp(-self.learning_rate * lifeforce_spent)
|
||||
grounded_confidence = raw_knowledge * self.fidelity_cap
|
||||
return grounded_confidence
|
||||
|
||||
def get_optimal_strategy(self, target_confidence: float) -> dict:
|
||||
"""
|
||||
Ask Nyx: 'Is it worth simulating this?'
|
||||
|
||||
Returns:
|
||||
dict with keys:
|
||||
- action: 'SIMULATE' or 'DEPLOY_TO_REALITY'
|
||||
- reason: Human-readable explanation
|
||||
- lifeforce_budget: Required LF (0 if reality is needed)
|
||||
"""
|
||||
# 1. Check if the target is even possible in Virtual
|
||||
if target_confidence > self.fidelity_cap:
|
||||
return {
|
||||
"action": "DEPLOY_TO_REALITY",
|
||||
"reason": f"Target {target_confidence} exceeds Sim Fidelity ({self.fidelity_cap}). Simulation is futile.",
|
||||
"lifeforce_budget": 0
|
||||
}
|
||||
|
||||
# 2. Calculate required Lifeforce to reach possible target
|
||||
# Inverse of the exponential decay formula
|
||||
required_lf = -math.log(1 - (target_confidence / self.fidelity_cap)) / self.learning_rate
|
||||
|
||||
return {
|
||||
"action": "SIMULATE",
|
||||
"reason": f"Spend {required_lf:.2f} LF to reach {target_confidence} confidence.",
|
||||
"lifeforce_budget": round(required_lf, 2)
|
||||
}
|
||||
|
||||
|
||||
# --- Usage Example ---
|
||||
if __name__ == "__main__":
|
||||
engine = TemporalExchangeEngine(sim_fidelity=0.8)
|
||||
|
||||
# Scenario A: Nyx wants 99% certainty (Impossible in Sim)
|
||||
print(engine.get_optimal_strategy(0.99))
|
||||
# Output: DEPLOY_TO_REALITY (Simulation is futile)
|
||||
|
||||
# Scenario B: Nyx wants 70% certainty (Possible)
|
||||
print(engine.get_optimal_strategy(0.70))
|
||||
# Output: SIMULATE (Spend ~20 LF)
|
||||
Reference in New Issue
Block a user