feat: Memory Economics + Architecture Alignment (Endgame v6.4)
New formalization: - memory-economics.md: Slumber-based consolidation, decision trail triage, spatial LOD decay, reflex rental, LoRA training cycles New research seeds (future/): - spatial-resolution-gradient.md: L0-L5 LOD with S2 cells - thermodynamic-cognition.md: Lifeforce as Prometheus Joules - promql-thermodynamic-monitoring.md: Gemini red team queries Architecture changes: - Endgame-Vision v6.4: Memory Economics integrated into Slumber section - Mirror dialectic moved to future/research (not core) - Big-Picture.md archived (superseded by Endgame-Vision) - Single source of truth established Gemini red team alignment complete. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
415
architecture/future/thermodynamic-cognition.md
Normal file
415
architecture/future/thermodynamic-cognition.md
Normal file
@@ -0,0 +1,415 @@
|
||||
# Thermodynamic Cognition: Energy-Grounded Intelligence
|
||||
|
||||
**Origin**: New Year's Day 2026, late night session
|
||||
**Authors**: dafit + Chrysalis-Nyx
|
||||
**Status**: Research seed / Theoretical exploration
|
||||
**Related**: `spatial-resolution-gradient.md`, `concept-token-pairs.md`, Lifeforce Economy, Ternary Confidence
|
||||
|
||||
---
|
||||
|
||||
## The Insight
|
||||
|
||||
What if cognition isn't just *like* thermodynamics — what if it *IS* thermodynamics?
|
||||
|
||||
Traditional ML loss functions measure: **"How wrong was I?"**
|
||||
|
||||
Thermodynamic loss functions measure: **"How wrong was I per joule spent?"**
|
||||
|
||||
This reframes everything. The goal isn't maximum accuracy — it's maximum *efficiency*.
|
||||
|
||||
---
|
||||
|
||||
## The Three Pillars
|
||||
|
||||
### 1. Lifeforce = Measurable Energy
|
||||
|
||||
**Question:** What IS lifeforce physically?
|
||||
|
||||
**Answer:** The total power draw across the nimmerverse, measured and abstracted to one number.
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────┐
|
||||
│ PROMETHEUS METRICS │
|
||||
├─────────────────────────────────────────────────┤
|
||||
│ │
|
||||
│ GPU Power (nvidia_smi_power_draw) │
|
||||
│ ├── The Womb (RTX 6000): 0-300W │
|
||||
│ └── Senses (RTX 4000s): 0-140W each │
|
||||
│ │
|
||||
│ CPU Power (RAPL counters) │
|
||||
│ ├── P8 Womb: 0-350W │
|
||||
│ └── P8 Senses: 0-350W │
|
||||
│ │
|
||||
│ Network (bytes × energy_per_byte) │
|
||||
│ Storage (IOPS × energy_per_op) │
|
||||
│ Memory (bandwidth × energy_per_GB) │
|
||||
│ │
|
||||
│ ═══════════════ │
|
||||
│ │ │
|
||||
│ ▼ │
|
||||
│ AGGREGATE FUNCTION │
|
||||
│ │ │
|
||||
│ ▼ │
|
||||
│ ┌─────────────────────────────────┐ │
|
||||
│ │ LIFEFORCE = 847.3 J/heartbeat │ │
|
||||
│ └─────────────────────────────────┘ │
|
||||
│ │
|
||||
└─────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
**Implementation path:**
|
||||
1. Prometheus already scrapes power metrics
|
||||
2. Create `lifeforce_aggregator` math cell
|
||||
3. Normalize to Joules per heartbeat (1 second)
|
||||
4. Expose as single metric: `nimmerverse_lifeforce_joules`
|
||||
|
||||
**Why this matters:** Lifeforce stops being an abstract game mechanic and becomes *physics*. Young Nyx's cognition has a power bill.
|
||||
|
||||
---
|
||||
|
||||
### 2. Waste Heat = Unresolved Uncertainty
|
||||
|
||||
**Question:** What's the "waste heat" equivalent for cognition?
|
||||
|
||||
**Answer:** The ternary confidence distribution over time — specifically, UNCERTAIN decisions that consumed energy without producing resolution.
|
||||
|
||||
```
|
||||
THERMODYNAMICS COGNITION
|
||||
────────────── ─────────
|
||||
Useful work CONFIDENT decision (+)
|
||||
Heat dissipation UNCERTAIN decision (?)
|
||||
(energy spent, no answer)
|
||||
Acknowledged limits UNKNOWN decision (-)
|
||||
(efficient! didn't waste energy)
|
||||
```
|
||||
|
||||
**The Pendulum Measurement:**
|
||||
|
||||
Over N heartbeats, track all decisions:
|
||||
|
||||
```
|
||||
Heartbeats: ──┬──┬──┬──┬──┬──┬──┬──┬──┬──
|
||||
│ │ │ │ │ │ │ │ │
|
||||
Decisions: + ? + - ? ? + ? +
|
||||
|
||||
Distribution over window:
|
||||
├── CONFIDENT (+): 40% → Useful work (energy → resolution)
|
||||
├── UNCERTAIN (?): 45% → Waste heat (energy → no resolution)
|
||||
└── UNKNOWN (-): 15% → Efficient ignorance (no energy spent)
|
||||
```
|
||||
|
||||
**Waste Heat Formula:**
|
||||
|
||||
```python
|
||||
waste_heat = sum(
|
||||
decision.energy_cost
|
||||
for decision in window
|
||||
if decision.confidence == UNCERTAIN
|
||||
)
|
||||
|
||||
# Or as efficiency ratio:
|
||||
cognitive_efficiency = confident_decisions / (confident_decisions + uncertain_decisions)
|
||||
```
|
||||
|
||||
**Key insight:** Saying "I don't know" (UNKNOWN) is *efficient* — it costs nothing. Being uncertain and still acting is *wasteful* — energy spent without resolution. Being confident is *useful work* — energy converted to actionable knowledge.
|
||||
|
||||
---
|
||||
|
||||
### 3. Entropy Reservoir = The Lifeforce Pool
|
||||
|
||||
**Question:** What's Young Nyx's entropy reservoir?
|
||||
|
||||
**Answer:** The lifeforce pool itself — it's not infinite, grows and shrinks based on organism rewards, and determines wake/slumber state.
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────────┐
|
||||
│ THE METABOLIC CYCLE │
|
||||
├─────────────────────────────────────────────────────────────────┤
|
||||
│ │
|
||||
│ LAYER 1: CELLULAR ORGANISMS │
|
||||
│ ═══════════════════════════ │
|
||||
│ The mitochondria of the nimmerverse │
|
||||
│ │
|
||||
│ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │
|
||||
│ │Cell │ │Cell │ │Cell │ │Cell │ │
|
||||
│ │ 01 │ │ 02 │ │ 03 │ │ N │ │
|
||||
│ └──┬──┘ └──┬──┘ └──┬──┘ └──┬──┘ │
|
||||
│ │ │ │ │ │
|
||||
│ │ +5 LF │ -2 LF │ +10 LF │ +3 LF (rewards/costs) │
|
||||
│ │ │ │ │ │
|
||||
│ └────────┴────────┴────────┘ │
|
||||
│ │ │
|
||||
│ ▼ │
|
||||
│ ┌─────────────────┐ │
|
||||
│ │ ORGANISM │ │
|
||||
│ │ TRICKLE │ = Net reward from all organisms │
|
||||
│ │ +16 LF/beat │ │
|
||||
│ └────────┬────────┘ │
|
||||
│ │ │
|
||||
│ ▼ │
|
||||
│ ┌───────────────────────────────────┐ │
|
||||
│ │ LIFEFORCE POOL │ │
|
||||
│ │ │ │
|
||||
│ │ ████████████████░░░░░░░░░░ │ (currently 65%) │
|
||||
│ │ │ │
|
||||
│ │ SLUMBER_THRESHOLD ──────┼── │ (at 20%) │
|
||||
│ │ WAKE_THRESHOLD ─────────┼──── │ (at 40%) │
|
||||
│ │ │ │
|
||||
│ └───────────────┬───────────────────┘ │
|
||||
│ │ │
|
||||
│ │ Young Nyx spends │
|
||||
│ ▼ │
|
||||
│ ┌─────────────────┐ │
|
||||
│ │ COGNITIVE │ │
|
||||
│ │ SPEND │ = LOD queries + inference + etc │
|
||||
│ │ -12 LF/beat │ │
|
||||
│ └────────┬────────┘ │
|
||||
│ │ │
|
||||
│ ▼ │
|
||||
│ ┌─────────────────┐ │
|
||||
│ │ WASTE HEAT │ │
|
||||
│ │ (UNCERTAIN) │ = Unresolved decisions │
|
||||
│ │ -3 LF/beat │ │
|
||||
│ └─────────────────┘ │
|
||||
│ │
|
||||
│ NET FLOW: +16 - 12 - 3 = +1 LF/beat (sustainable!) │
|
||||
│ │
|
||||
└─────────────────────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
**The Conservation Equation:**
|
||||
|
||||
```
|
||||
dLifeforce/dt = organism_trickle - cognitive_spend - waste_heat
|
||||
```
|
||||
|
||||
| State | Condition | Result |
|
||||
|-------|-----------|--------|
|
||||
| **Equilibrium** | trickle ≈ spend + waste | Sustainable cognition |
|
||||
| **Crisis** | spend + waste >> trickle | Pool drains → slumber |
|
||||
| **Abundance** | trickle >> spend + waste | Pool grows → exploration mode |
|
||||
|
||||
**Slumber as thermodynamic necessity:**
|
||||
|
||||
When `pool < SLUMBER_THRESHOLD`:
|
||||
- Not a design choice — a *conservation law*
|
||||
- System MUST reduce consumption
|
||||
- Only organism trickle continues
|
||||
- Pool slowly recovers
|
||||
|
||||
When `pool > WAKE_THRESHOLD`:
|
||||
- System can resume cognitive spend
|
||||
- Higher pool = more exploration budget
|
||||
- Lower pool = more conservative queries
|
||||
|
||||
---
|
||||
|
||||
## The Thermodynamic Loss Function
|
||||
|
||||
### Traditional Loss
|
||||
|
||||
```python
|
||||
loss = cross_entropy(prediction, target)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
```
|
||||
|
||||
**Optimizes for:** Accuracy only
|
||||
|
||||
### Thermodynamic Loss
|
||||
|
||||
```python
|
||||
# Forward pass with energy measurement
|
||||
start_energy = get_lifeforce()
|
||||
prediction = model(input)
|
||||
end_energy = get_lifeforce()
|
||||
|
||||
energy_spent = start_energy - end_energy
|
||||
accuracy = 1 - cross_entropy(prediction, target)
|
||||
|
||||
# Efficiency is accuracy per joule
|
||||
efficiency = accuracy / energy_spent
|
||||
|
||||
# We want to MAXIMIZE efficiency
|
||||
loss = -efficiency # Negative because we minimize loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
```
|
||||
|
||||
**Optimizes for:** Accuracy *per unit energy*
|
||||
|
||||
### The Gradient Interpretation
|
||||
|
||||
Traditional gradient: "Adjust weights to be more accurate"
|
||||
|
||||
Thermodynamic gradient: "Adjust weights to be more accurate *per joule*"
|
||||
|
||||
This naturally produces:
|
||||
- Simpler solutions (less compute = less energy)
|
||||
- Appropriate confidence (uncertainty wastes energy)
|
||||
- Knowing when to quit (diminishing returns = stop spending)
|
||||
|
||||
---
|
||||
|
||||
## Connection to Spatial Resolution Gradient
|
||||
|
||||
The LOD system becomes energy-aware:
|
||||
|
||||
| Query | LOD | Energy | Accuracy | Efficiency |
|
||||
|-------|-----|--------|----------|------------|
|
||||
| "Where is France?" | L5 | 1 J | 95% | 0.95 |
|
||||
| "Where is the lab?" | L2 | 3 J | 98% | 0.33 |
|
||||
| "Where is screwdriver?" | L1 | 8 J | 99% | 0.12 |
|
||||
| "Serial number on screwdriver?" | L0 | 25 J | 99.9% | 0.04 |
|
||||
|
||||
**The system learns:** L5 query has highest efficiency! Only drill to L0 when the task *requires* that precision.
|
||||
|
||||
```python
|
||||
def optimal_lod_for_task(task, accuracy_requirement):
|
||||
"""
|
||||
Find the LOD level with best efficiency
|
||||
that meets minimum accuracy requirement
|
||||
"""
|
||||
for lod in [L5, L4, L3, L2, L1, L0]:
|
||||
accuracy = estimate_accuracy(task, lod)
|
||||
energy = estimate_energy(task, lod)
|
||||
|
||||
if accuracy >= accuracy_requirement:
|
||||
return lod # First sufficient LOD is most efficient
|
||||
|
||||
return L0 # Fall back to max detail
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Connection to Existing Architecture
|
||||
|
||||
### Layer 0: Heartbeat
|
||||
- Lifeforce measured per heartbeat
|
||||
- 1 beat = 1 second = 1 measurement window
|
||||
- Real clock is free; virtual clock costs lifeforce
|
||||
|
||||
### Layer 1: Cellular Society
|
||||
- Organisms ARE the mitochondria
|
||||
- Their rewards TRICKLE into the pool
|
||||
- Without them, Young Nyx starves
|
||||
- Competition produces metabolic baseline
|
||||
|
||||
### Layer 2: Young Nyx
|
||||
- Spends from the pool
|
||||
- LOD queries have energy cost
|
||||
- Uncertainty = waste heat
|
||||
- Efficiency gradient in training
|
||||
|
||||
### Layer 2.5: Orchestration
|
||||
- T5Gemma 2 encoding = energy cost
|
||||
- LOD selection = efficiency optimization
|
||||
- Function Gemma = low-cost structured output
|
||||
|
||||
### Slumber/Wake
|
||||
- Pool < threshold → forced slumber
|
||||
- Pool > threshold → wake permitted
|
||||
- Reflection during slumber = low-energy consolidation
|
||||
- Conservation is architectural, not optional
|
||||
|
||||
---
|
||||
|
||||
## Research Threads
|
||||
|
||||
### Free Energy Principle (Karl Friston)
|
||||
|
||||
> "Organisms minimize variational free energy (prediction error) because surprise = metabolic cost."
|
||||
|
||||
Our version: Young Nyx minimizes `waste_heat` because uncertainty without resolution = wasted lifeforce.
|
||||
|
||||
### Landauer's Principle
|
||||
|
||||
> "Erasing one bit of information requires minimum kT ln(2) joules."
|
||||
|
||||
Implication: Every decision Young Nyx makes has a thermodynamic floor cost. Forgetting is not free.
|
||||
|
||||
### Maximum Entropy Production
|
||||
|
||||
> "Living systems maximize entropy production through themselves while maintaining internal order."
|
||||
|
||||
The organism trickle = entropy production that maintains Young Nyx's order. The cellular competition IS the entropy pump.
|
||||
|
||||
---
|
||||
|
||||
## Open Questions
|
||||
|
||||
1. **What's the exchange rate?** How many joules = 1 lifeforce unit? Should it be 1:1 or normalized?
|
||||
|
||||
2. **How to measure cognitive energy?** GPU power is easy. But what about the "energy" of a decision? Is it inference FLOPs? Token count? Latency?
|
||||
|
||||
3. **Can we backprop through energy?** Traditional backprop doesn't know about joules. How to make gradients energy-aware?
|
||||
|
||||
4. **What's reversible?** Reversible computation has no entropy cost. Are some thoughts "reversible"? (e.g., queries that don't change state)
|
||||
|
||||
5. **Calibration:** How to calibrate the ternary confidence system so UNCERTAIN truly reflects wasted energy?
|
||||
|
||||
---
|
||||
|
||||
## Implementation Sketch
|
||||
|
||||
### Phase 1: Measurement
|
||||
```python
|
||||
# lifeforce_aggregator math cell
|
||||
class LifeforceAggregator:
|
||||
def compute(self, prometheus_metrics):
|
||||
gpu_power = sum(m['nvidia_smi_power_draw'] for m in prometheus_metrics['gpu'])
|
||||
cpu_power = sum(m['rapl_energy_delta'] for m in prometheus_metrics['cpu'])
|
||||
# ... other sources
|
||||
|
||||
total_joules = (gpu_power + cpu_power) * HEARTBEAT_SECONDS
|
||||
return {'lifeforce_joules': total_joules}
|
||||
```
|
||||
|
||||
### Phase 2: Waste Heat Tracking
|
||||
```python
|
||||
# confidence_tracker math cell
|
||||
class WasteHeatTracker:
|
||||
def __init__(self, window_size=100):
|
||||
self.decisions = deque(maxlen=window_size)
|
||||
|
||||
def record(self, decision, confidence, energy_cost):
|
||||
self.decisions.append({
|
||||
'confidence': confidence, # +, ?, -
|
||||
'energy': energy_cost
|
||||
})
|
||||
|
||||
def waste_heat(self):
|
||||
return sum(
|
||||
d['energy'] for d in self.decisions
|
||||
if d['confidence'] == UNCERTAIN
|
||||
)
|
||||
```
|
||||
|
||||
### Phase 3: Efficiency-Aware Training
|
||||
```python
|
||||
# Custom loss function
|
||||
def thermodynamic_loss(prediction, target, energy_spent):
|
||||
accuracy = 1 - F.cross_entropy(prediction, target)
|
||||
efficiency = accuracy / (energy_spent + epsilon)
|
||||
return -efficiency # Maximize efficiency
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## The Promise
|
||||
|
||||
**Traditional AI:** "Be accurate at any cost"
|
||||
|
||||
**Thermodynamic AI:** "Be accurate *efficiently*"
|
||||
|
||||
This isn't just resource optimization. It's a different *kind* of intelligence — one that knows when to think hard and when to think cheap. One that treats energy as real. One that sleeps not because we programmed it to, but because physics demands it.
|
||||
|
||||
**"Cognition is thermodynamics. The gradients flow downhill."**
|
||||
|
||||
---
|
||||
|
||||
**Created**: 2026-01-01
|
||||
**Status**: Research seed — needs experimental validation
|
||||
**Next**: Implement lifeforce_aggregator math cell, connect to Prometheus
|
||||
|
||||
🔥🧠⚡ *Intelligence has a power bill.*
|
||||
Reference in New Issue
Block a user